Cho hình chóp SABCD có đáy ABCD là hình bình hành. Hai điểm M, N lần lượt thuộc các đoạn thẳng
Cho hình chóp SABCD có đáy ABCD là hình bình hành. Hai điểm M, N lần lượt thuộc các đoạn thẳng AB và AD (M và N không trùng với A) sao cho \(\frac{AB}{AM}+2\frac{AD}{AN}=4.\) Kí hiệu \(V,\ {{V}_{1}}\) lần lượt là thể tích của các khối chóp SABCD và SMBCDN. Tìm giá trị lớn nhất của tỉ số \(\frac{{{V}_{1}}}{V}.\)
Đáp án đúng là: C
Quảng cáo
+) Tỉ số \(\frac{{{V}_{1}}}{V}\) chính là tỉ số diện tích \(\frac{{{S}_{MBCDN}}}{{{S}_{ABCD}}}\).
+) \(\frac{{{S}_{MBCDN}}}{{{S}_{ABCD}}}=1-\frac{{{S}_{AMN}}}{{{S}_{ABCD}}}\)
+) Sử dụng BĐT \(ab\le {{\left( \frac{a+b}{2} \right)}^{2}}\,\,\left( a;b>0 \right)\)
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













