Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(\int\limits_1^3 {f\left( x \right)dx}  = 4\). Tính \(I = \int\limits_0^1 {f\left( {2x + 1} \right)dx} \)

Câu hỏi số 242390:
Thông hiểu

Cho \(\int\limits_1^3 {f\left( x \right)dx}  = 4\). Tính \(I = \int\limits_0^1 {f\left( {2x + 1} \right)dx} \)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:242390
Phương pháp giải

Đặt \(x = 2t + 1\)

Giải chi tiết

Đặt \(x = 2t + 1 \Leftrightarrow dx = 2dt\)

Đổi cận \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = 0\\x = 3 \Leftrightarrow t = 1\end{array} \right. \Rightarrow \int\limits_1^3 {f\left( x \right)dx}  = \int\limits_0^1 {f\left( {2t + 1} \right)2dt}  = 2\int\limits_0^1 {f\left( {2x + 1} \right)dx}  = 4 \Leftrightarrow I = \int\limits_0^1 {f\left( {2x + 1} \right)dx}  = 2\)

Chọn C.  

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com