Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Biết hệ số của \({{x}^{2}}\) trong khai triển của \({{\left( 1-3x \right)}^{n}}\) là \(90.\) Tìm \(n\,\,?\)

Câu 242990: Biết hệ số của \({{x}^{2}}\) trong khai triển của \({{\left( 1-3x \right)}^{n}}\) là \(90.\) Tìm \(n\,\,?\)

A. \(n=6.\)

B.  \(n=8.\)          

C.  \(n=7.\) 

D. \(n=5.\)

Câu hỏi : 242990

Phương pháp giải:

Sử dụng công thức tổng quát của khai triển nhị thức New – tơn là \({{\left( a+b \right)}^{n}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}.{{a}^{n\,-\,k}}.{{b}^{k}}.\)

  • Đáp án : D
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Điều kiện : \(n\ge 2;\ \ n\in {{N}^{*}}.\)

    Xét khai triển \({{\left( 1-3x \right)}^{n}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}{{.1}^{n\,-\,k}}.{{\left( -\,3x \right)}^{k}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}.{{\left( -\,3 \right)}^{k}}{{x}^{k}}.\)

    Hệ số của \({{x}^{2}}\) ứng với \(k=2\,\,\Rightarrow \,\,C_{n}^{2}.{{\left( -\,3 \right)}^{2}}=90\Leftrightarrow \,\,C_{n}^{2}=10\Leftrightarrow \frac{n!}{2!\left( n-2 \right)!}=10\)

    \(\begin{array}{l}
    \Leftrightarrow \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2\left( {n - 2} \right)!}} = 10 \Leftrightarrow {n^2} - n = 20\\
    \Leftrightarrow \left[ \begin{array}{l}
    n = 5\;\;\left( {tm} \right)\\
    n = - 4\;\;\left( {ktm} \right)
    \end{array} \right. \Leftrightarrow n = 5.
    \end{array}\)

    Chọn D

     

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com