Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB=a\sqrt{3},\,\,AD=a.\) Tam giác \(SAB\)

Câu hỏi số 243010:
Thông hiểu

 Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB=a\sqrt{3},\,\,AD=a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo \(a\) diện tích \(S\) của mặt cầu ngoại tiếp hình chóp \(S.ABCD.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:243010
Phương pháp giải

Áp dụng công thức tính nhanh tính bán kính mặt cầu ngoại tiếp khối chóp dạng mặt bên vuông góc với đáy

Giải chi tiết

Cách 1:

Bán kính đường tròn ngoại tiếp hình chữ nhật \(ABCD\) là \({{R}_{ABCD}}=a.\)

Bán kính đường tròn ngoại tiếp tam giác \(ABC\) là \({{R}_{\Delta \,ABC}}=a\sqrt{3}.\frac{\sqrt{3}}{3}=a.\)

Áp dụng công thức tính nhanh, bán kính mặt cầu ngoại tiếp hình chóp \(S.ABCD\) là

\(R=\sqrt{R_{ABCD}^{2}+R_{\Delta \,ABC}^{2}-\frac{A{{B}^{2}}}{4}}=\sqrt{{{a}^{2}}+{{a}^{2}}-\frac{{{\left( a\sqrt{3} \right)}^{2}}}{4}}=\frac{a\sqrt{5}}{2}.\)

Vậy diện tích mặt cầu cần tính là \(S=4\pi {{R}^{2}}=4\pi .{{\left( \frac{a\sqrt{5}}{2} \right)}^{2}}=5\pi {{a}^{2}}.\)

Cách 2 :

Gọi H là trung điểm của \(AB\Rightarrow SH\bot \left( ABCD \right)\)

Gọi O là tâm hình chữ nhật ABCD \(\Rightarrow \) O là tâm đường tròn ngoại tiếp \(ABCD\).

Qua O kẻ đường thẳng \({{d}_{1}}//SH\Rightarrow {{d}_{1}}\bot \left( ABCD \right)\) tại O.

Gọi \(G\) là tâm tam giác đều \(ABC,\) qua G kẻ \({{d}_{2}}//HI\Rightarrow {{d}_{2}}\bot \left( ABC \right)\) tại G.

Gọi \(I={{d}_{1}}\cap {{d}_{2}}\Rightarrow I\) là tâm đường tròn ngoại tiếp chóp \(S.ABCD\).

Ta có : \(IO=GH=\frac{1}{3}SH=\frac{1}{3}.\frac{a\sqrt{3}.\sqrt{3}}{2}=\frac{a}{2};AC=\sqrt{A{{B}^{2}}+A{{D}^{2}}}=2a\Rightarrow AO=\frac{1}{2}AC=a\).

Xét tam giác vuông  AIO có \(IA=\sqrt{I{{O}^{2}}+O{{A}^{2}}}=\sqrt{{{\left( \frac{a}{2} \right)}^{2}}+{{a}^{2}}}=\frac{a\sqrt{5}}{2}\)

Vậy diện tích mặt cầu cần tính là \(S=4\pi {{R}^{2}}=4\pi .{{\left( \frac{a\sqrt{5}}{2} \right)}^{2}}=5\pi {{a}^{2}}.\)

 

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com