Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rằng \(I=\int\limits_{0}^{1}{x\cos 2xdx}=\frac{1}{4}\left( a\sin 2+b\cos 2+c \right)\) với \(a,b,c\in Z\).

Câu hỏi số 246741:
Thông hiểu

Biết rằng \(I=\int\limits_{0}^{1}{x\cos 2xdx}=\frac{1}{4}\left( a\sin 2+b\cos 2+c \right)\) với \(a,b,c\in Z\). Mệnh đề nào sau đây là đúng?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:246741
Phương pháp giải

Sử dụng phương pháp tích phân từng phần.

Giải chi tiết

 

\(I = \int\limits_0^1 {x\cos 2xdx} \) đặt \(\left\{ \begin{array}{l}
u = x\\
dv = \cos 2xdx
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
du = dx\\
v = \frac{{\sin 2x}}{2}
\end{array} \right. \Rightarrow I = \left. {x.\frac{{\sin 2x}}{2}} \right|_0^1 - \frac{1}{2}\int\limits_0^1 {\sin 2xdx} \)

\(\begin{array}{l}
I = \frac{{\sin 2}}{2} + \frac{1}{2}.\left. {\frac{{\cos 2x}}{2}} \right|_0^1 = \frac{{\sin 2}}{2} + \frac{1}{4}\left( {\cos 2 - 1} \right) = \frac{1}{4}\left( {2\sin 2 + \cos 2 - 1} \right) = \frac{1}{4}\left( {a\sin 2 + b\cos 2 + c} \right)\\
\Rightarrow \left\{ \begin{array}{l}
a = 2\\
b = 1\\
c = - 1
\end{array} \right. \Rightarrow a - b + c = 0
\end{array}\)

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com