Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên của \(m\in (-10;10)\) để hàm số \(y={{m}^{2}}{{x}^{4}}-2\left( 4m-1

Câu hỏi số 248901:
Vận dụng

Có bao nhiêu giá trị nguyên của \(m\in (-10;10)\) để hàm số \(y={{m}^{2}}{{x}^{4}}-2\left( 4m-1 \right){{x}^{2}}+1\) đồng biến trên khoảng \((1;\,\,+\infty )\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:248901
Phương pháp giải

Để hàm số đồng biến trên \(\left( 1;+\infty  \right)\Rightarrow y'\ge 0\,\,\forall x\in \left( 1;+\infty  \right)\) và \(y'=0\) tại hữu hạn điểm thuộc \(\left( 1;+\infty  \right)\)

Giải chi tiết

Ta có \(y'=4{{m}^{2}}{{x}^{3}}-4\left( 4m-1 \right)x=4x\left( {{m}^{2}}{{x}^{2}}-4m+1 \right).\)

Để hàm số đồng biến trên \(\left( 1;+\infty  \right)\Leftrightarrow y'\ge 0,\text{ }\forall x\in \left( 1;+\infty  \right)\Leftrightarrow {{m}^{2}}{{x}^{2}}-4m+1\ge 0,\text{ }\forall x\in \left( 1;+\infty  \right)\)          (1)

Rõ ràng \(m=0\) thỏa mãn (1).

Với \(m\ne 0\) thì (1)  \( \Leftrightarrow {x^2} \ge \frac{{4m - 1}}{{{m^2}}}\,\,\forall x \in \left( {1; + \infty } \right) \Leftrightarrow \frac{{4m - 1}}{{{m^2}}} \le 1 \Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
{m^2} - 4m + 1 \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
\left[ \begin{array}{l}
m \ge 2 + \sqrt 3 \\
m \le 2 - \sqrt 3
\end{array} \right.
\end{array} \right.\)

Vậy có 16 giá trị của m thỏa mãn yêu cầu bài toán.

 

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com