Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một máy phát điện xoay chiều một pha có điện trở không đáng kể,được mắc với mạch ngoài

Câu hỏi số 250774:
Vận dụng

Một máy phát điện xoay chiều một pha có điện trở không đáng kể,được mắc với mạch ngoài là một đoạn mạch mắc nối tiếp gồm điện thuần R, cuộn cảm thuần L và tụ điện C. Khi tốc độ quay của lần lượt 360 vòng/ phút  và 800 vòng /phút thì cường độ dòng điện hiệu dụng trong mạch là như nhau . Khi tốc độ quay là n thì cường độ hiệu dụng trong mạch đạt cực đại . n0  có giá trị gần với giá trị nào sau đây ?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:250774
Phương pháp giải

Tần số của dòng điện f = np (n là tốc độ quay của roto, p là số cặp cực)

Sử dụng lí thuyết về mạch điện xoay chiều có f thay đổi.

Giải chi tiết

Suất điện động của nguồn điện: \(E = {{\omega N{\Phi _0}} \over {\sqrt 2 }} = {{2\pi fN{\Phi _0}} \over {\sqrt 2 }} = U\) ( do r = 0)

Với    f = np   (n tốc độ quay của roto, p số cặp cực từ)

Do I1 = I2 ta có:

\(\eqalign{
& {{\omega _1^2} \over {{R^2} + {{({\omega _1}L - {1 \over {{\omega _1}C}})}^2}}} = {{\omega _2^2} \over {{R^2} + {{({\omega _2}L - {1 \over {{\omega _2}C}})}^2}}} \Rightarrow \omega _1^2[{R^2} + {({\omega _2}L - {1 \over {{\omega _2}C}})^2}] = \omega _2^2[{R^2} + {({\omega _1}L - {1 \over {{\omega _1}C}})^2}] \cr
& \Rightarrow \omega _1^2{R^2} + \omega _1^2\omega _2^2{L^2} + {{\omega _1^2} \over {\omega _2^2{C^2}}} - 2\omega _1^2{L \over C} = \omega _2^2{R^2} + \omega _1^2\omega _2^2{L^2} + {{\omega _2^2} \over {\omega _1^2{C^2}}} - 2\omega _2^2{L \over C} \cr
& \Rightarrow (\omega _1^2 - \omega _2^2)({R^2} - 2{L \over C}) = {1 \over {{C^2}}}({{\omega _2^2} \over {\omega _1^2}} - {{\omega _1^2} \over {\omega _2^2}}) = {1 \over {{C^2}}}{{(\omega _2^2 - \omega _1^2)(\omega _2^2 + \omega _1^2)} \over {\omega _1^2\omega _2^2}} \cr
& \Rightarrow (2{L \over C} - {\rm{ }}{R^2}){C^2} = {1 \over {\omega _1^2}} + {1 \over {\omega _2^2}}\;(*) \cr} \)

 Dòng điện hiệu dụng qua mạch: \(I = {U \over Z} = {E \over Z}\)

 I = I­mac  khi E2 /Z2 có giá trị lớn nhất hay khi \(y = {{\omega _0^2} \over {{R^2} + {{({\omega _0}L - {1 \over {{\omega _0}C}})}^2}}}\) có giá trị lớn nhất

\(y = {1 \over {{{{R^2} + \omega _0^2{L^2} + {1 \over {\omega _0^2{C^2}}} - 2{L \over C}} \over {\omega _0^2}}}} = {1 \over {{1 \over {{C^2}}}{1 \over {\omega _0^4}} + {{{R^2} - 2{L \over C}} \over {\omega _0^2}} - {L^2}}}\) 

Để y = ymax thì mẫu số bé nhất

Đặt \(x = {1 \over {\omega _0^2}} \Rightarrow y = {{{x^2}} \over {{C^2}}} + ({R^2} - 2{L \over C})x - {L^2}\)

Lấy đạo hàm mẫu số, cho bằng 0 ta được kết quả \({x_0} = {1 \over {\omega _0^2}} = {1 \over 2}{C^2}\left( {2{L \over C} - {R^2}} \right)\left( {**} \right)\)

Từ (*) và (**) ta suy ra : \({1 \over {\omega _1^2}} + {1 \over {\omega _2^2}} = {2 \over {\omega _0^2}} \Leftrightarrow {1 \over {f_1^2}} + {1 \over {f_2^2}} = {2 \over {f_0^2}}\)

hay \({1 \over {n_1^2}} + {1 \over {n_2^2}} = {2 \over {n_0^2}} \Rightarrow n_0^2 = {{2n_1^2.n_2^2} \over {n_1^2 + n_2^2}} = {{{{2.360}^2}{{.800}^2}} \over {{{360}^2} + {{800}^2}}} \Rightarrow n = 464(vong/phut)\)  

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com