Cho \({\left( {1 + 2x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n},\,\,n \in {N^*}\). Biết \({a_0} +
Cho \({\left( {1 + 2x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n},\,\,n \in {N^*}\). Biết \({a_0} + \frac{{{a_1}}}{2} + \frac{{{a_2}}}{{{a^2}}} + ... + \frac{{{a_n}}}{{{2^n}}} = 4096\). Số lớn nhất trong các số \({a_0},\,\,{a_1},\,\,...,\,{a_n}\) có giá trị bằng?
Đáp án đúng là: A
Quảng cáo
- Công thức khai triển nhị thức Newton: \({(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \). Đánh giá, tìm giá trị lớn nhất trong các số \({a_0},\,\,{a_1},\,\,...,\,{a_n}\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












