Cho \(a>0,\ b>0\) thỏa mãn \({{\log }_{2a+2b+1}}\left( 4{{a}^{2}}+{{b}^{2}}+1 \right)+{{\log
Cho \(a>0,\ b>0\) thỏa mãn \({{\log }_{2a+2b+1}}\left( 4{{a}^{2}}+{{b}^{2}}+1 \right)+{{\log }_{4ab+1}}\left( 2a+2b+1 \right)=2.\) Giá trị của \(a+2b\) bằng:
Đáp án đúng là: A
Quảng cáo
Sử dụng bất đẳng thức Cauchy cho hai số thực dương.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












