Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số liên tục trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Có bao

Câu hỏi số 278295:
Thông hiểu

Cho hàm số liên tục trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?

(1) Hàm số đạt cực trị tại điểm \({x_0}\)khi và chỉ khi \(f'\left( {{x_0}} \right) = 0\).

(2) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm và có đạo hàm cấp hai tại điểm \({x_0}\) thỏa mãn điều kiện \(f'\left( {{x_0}} \right) = f\left( {{x_0}} \right) = 0\) thì điểm \({x_0}\) không phải là điểm cực trị của hàm số \(y = f\left( x \right)\).

(3) Nếu \(f'\left( x \right)\) đổi dấu khi x qua điểm \({x_0}\) thì điểm \({x_0}\) là điểm cực tiểu của hàm số \(y = f\left( x \right)\).

(4) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm và có đạo hàm cấp hai tại điểm \({x_0}\) thỏa mãn điều kiện \(f'\left( {{x_0}} \right) = 0,f\left( {{x_0}} \right) > 0\) thì điểm \({x_0}\) là điểm cực tiểu của hàm số \(y = f\left( x \right)\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:278295
Phương pháp giải

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Giải chi tiết

 

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số \(y = {x^3}\) có \(y' = 3{x^2} = 0 \Leftrightarrow x = 0\). Tuy nhiên \(x = 0\) không là điểm cực trị của hàm số.

(2) sai, khi \(f''\left( {{x_0}} \right) = 0\), ta không có kết luận về điểm \({x_0}\) có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai;  (4): đúng

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com