Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tập hợp tất cả các giá trị của tham số m để phương trình \({4^x} - m{.2^x} + 2m - 5 = 0\)

Câu hỏi số 281504:
Vận dụng

Tìm tập hợp tất cả các giá trị của tham số m để phương trình \({4^x} - m{.2^x} + 2m - 5 = 0\) có hai nghiệm phân biệt.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:281504
Phương pháp giải

Đặt \({2^x} = t,\,\,\left( {t > 0} \right)\). Tìm điều kiện của m để phương trình  \({t^2} - mt + 2m - 5 = 0\) có 2 nghiệm dương phân biệt.

Giải chi tiết

 

Đặt \({2^x} = t,\,\,\left( {t > 0} \right)\). Phương trình \({4^x} - m{.2^x} + 2m - 5 = 0\) (1) trở thành \({t^2} - mt + 2m - 5 = 0\) (2)

Để phương trình (1) cso 2 nghiệm phân biệt thì phương trình (2) có 2 nghiệm dương phân biệt

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta  > 0\\m > 0\\2m - 5 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 4\left( {2m - 5} \right) > 0\\m > 0\\2m - 5 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 8m + 20 > 0\\m > 0\\2m - 5 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m > \frac{5}{2}\end{array} \right. \Leftrightarrow m > \frac{5}{2}\)

Vậy, \(m \in \left( {\frac{5}{2}; + \infty } \right)\).


 

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com