Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có nhiều nhất bao nhiêu số nguyên m thuộc nửa khoảng \(\left[ { - 2017;2017} \right)\) để phương

Câu hỏi số 283028:
Vận dụng cao

Có nhiều nhất bao nhiêu số nguyên m thuộc nửa khoảng \(\left[ { - 2017;2017} \right)\) để phương trình \(\sqrt {2{x^2} - x - 2m}  = x - 2\) có nghiệm ?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:283028
Phương pháp giải

\(\sqrt {f\left( x \right)}  = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) = {g^2}\left( x \right)\end{array} \right.\).

Giải chi tiết

 

\(\begin{array}{l}\sqrt {2{x^2} - x - 2m}  = x - 2\\ \Leftrightarrow \left\{ \begin{array}{l}x - 2 \ge 0\\2{x^2} - x - 2m = {x^2} - 4x + 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\{x^2} + 3x - 2m - 4 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\{x^2} + 3x - 4 = 2m\end{array} \right.\end{array}\)

Để phương trình ban đầu có nghiệm \( \Leftrightarrow \) phương trình \({x^2} + 3x - 4 = 2m\) có nghiệm \(x \ge 2\).

Số nghiệm của phương trình \({x^2} + 3x - 4 = 2m\) là số giao điểm của đồ thị hàm số \(y = {x^2} + 3x - 4\) và đường thẳng \(y = 2m\) song song với trục hoành.

Xét hàm số \(y = {x^2} + 3x - 4\) ta có BBT :

 

Dựa vào BBT ta có để phương trình \({x^2} + 3x - 4 = 2m\) có nghiệm \(x \ge 2\) khi và chỉ khi \(2m \ge 6 \Leftrightarrow m \ge 3\).

Kết hợp điều kiện đề bài ta có \(m \in \left[ {3;2017} \right)\), có \(\frac{{2016 - 3}}{1} + 1 = 2014\) số nguyên m thỏa mãn.

Chọn đáp án A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com