Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Đồ thị hàm số \(y = \dfrac{{1 - 2{x^2}}}{{{x^2} + 6x + 9}}\) có tiệm cận đứng \(x = a\) và tiệm

Câu hỏi số 292482:
Vận dụng

Đồ thị hàm số \(y = \dfrac{{1 - 2{x^2}}}{{{x^2} + 6x + 9}}\) có tiệm cận đứng \(x = a\) và tiệm cận ngang \(y = b\). Tính giá trị \(T = 2a - b\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:292482
Phương pháp giải

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = a\,\)hoặc\(\,\mathop {\lim }\limits_{x \to  - \infty } f(x) = a \Rightarrow y = a\) là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).

Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  - \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  - \infty \,\)thì \(x = a\)  là TCĐ của đồ thị hàm số.

Giải chi tiết

\(y = \dfrac{{1 - 2{x^2}}}{{{x^2} + 6x + 9}},\,\,D = R{\rm{\backslash }}\left\{ { - 3} \right\}\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } f(x) =  - 2,\mathop {\lim }\limits_{x \to  - \infty } f(x) =  - 2\,\,\,\\\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} f(x) = \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} f(x) =  - \infty \end{array}\)

\( \Rightarrow \) Hàm số có TCN là \(y =  - 2\), TCĐ là \(x =  - 3\)

\( \Rightarrow a =  - 3,\,\,b =  - 2\,\, \Rightarrow \)\(T = 2a - b = 2.\left( { - 3} \right) - \left( { - 2} \right) =  - 4\).

Chọn: A

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com