Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rằng tập nghiệm của bất phương trình \(\sqrt {2x + 4}  - 2\sqrt {2 - x}  \ge \dfrac{{6x -

Câu hỏi số 303731:
Vận dụng cao

Biết rằng tập nghiệm của bất phương trình \(\sqrt {2x + 4}  - 2\sqrt {2 - x}  \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\) là \(\left[ {a;b} \right]\). Khi đó giá trị của biểu thức \(P = 3a - 2b\) bằng :

Đáp án đúng là: B

Quảng cáo

Câu hỏi:303731
Phương pháp giải

Nhân liên hợp với biểu thức ở VT, chuyển vế, đưa bất phương trình về dạng tích.

Giải chi tiết

ĐK: \( - 2 \le x \le 2\).

Với điều kiện trên ta có:

\(\begin{array}{l}\,\,\,\,\,\sqrt {2x + 4}  - 2\sqrt {2 - x}  \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\\ \Leftrightarrow \dfrac{{\left( {\sqrt {2x + 4}  - 2\sqrt {2 - x} } \right)\left( {\sqrt {2x + 4}  + 2\sqrt {2 - x} } \right)}}{{\sqrt {2x + 4}  + 2\sqrt {2 - x} }} \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\\ \Leftrightarrow \dfrac{{2x + 4 - 4\left( {2 - x} \right)}}{{\sqrt {2x + 4}  + 2\sqrt {2 - x} }} \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\\ \Leftrightarrow \dfrac{{6x - 4}}{{\sqrt {2x + 4}  + 2\sqrt {2 - x} }} \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\\ \Leftrightarrow \left( {6x - 4} \right)\left( {\dfrac{1}{{\sqrt {2x + 4}  + 2\sqrt {2 - x} }} - \dfrac{1}{{5\sqrt {{x^2} + 1} }}} \right) \ge 0\,\,\left( * \right)\end{array}\)

Ta có \(5\sqrt {{x^2} + 1}  \ge 5 \Leftrightarrow \dfrac{1}{{5\sqrt {{x^2} + 1} }} \le \dfrac{1}{5} \Rightarrow  - \dfrac{1}{{5\sqrt {{x^2} + 1} }} \ge  - \dfrac{1}{5}\).

Áp dụng BĐT Bunhiacopxki ta có :

\(\sqrt {2x + 4}  + 2\sqrt {2 - x}  = \sqrt 2 \sqrt {x + 2}  + 2\sqrt {2 - x}  \le \sqrt {\left[ {{{\left( {\sqrt 2 } \right)}^2} + {2^2}} \right]\left( {x + 2 + 2 - x} \right)}  = \sqrt {6.4}  = 2\sqrt 6  < 5\)

\(\begin{array}{l} \Rightarrow \dfrac{1}{{\sqrt {2x + 4}  + 2\sqrt {2 - x} }} > \dfrac{1}{5}\\ \Rightarrow \dfrac{1}{{\sqrt {2x + 4}  + 2\sqrt {2 - x} }} - \dfrac{1}{{5\sqrt {{x^2} + 1} }} > 0\end{array}\) 

Do đó \(\left( * \right) \Leftrightarrow 6x - 4 \ge 0 \Leftrightarrow x \ge \dfrac{2}{3}\).

Kết hợp điều kiện ta có tập nghiệm của bất phương trình là \(\left[ {\dfrac{2}{3};2} \right] \Rightarrow \left\{ \begin{array}{l}a = \dfrac{2}{3}\\b = 2\end{array} \right. \Rightarrow P = 3a - 2b =  - 2\).

Chọn B.  

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com