Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA = SB = \sqrt 2 a\), khoảng cách từ A

Câu hỏi số 304535:
Vận dụng cao

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA = SB = \sqrt 2 a\), khoảng cách từ A đến mặt phẳng \(\left( {SCD} \right)\) bằng a. Thể tích của khối chóp đã cho bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:304535
Phương pháp giải

+) Gọi E, F lần lượt là trung điểm của AB và CD.

+) Dựng \(SH \bot EF\), chứng minh \(SH \bot \left( {ABCD} \right)\).

+) Dựng \(EK \bot \left( {SCD} \right)\). Chứng minh \(d\left( {A;\left( {SCD} \right)} \right) = d\left( {E;\left( {SCD} \right)} \right)\).

+) Dựa vào định lí cosin và định lí Pytago, tính SH và tính \({V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}}\).

Giải chi tiết

Gọi E, F lần lượt là trung điểm của AB và CD.

\(\Delta SAB\) có \(SA = SB\,\,\left( {gt} \right) \Rightarrow SE \bot AB \Rightarrow SE \bot CD\).

Ta có \(\left\{ \begin{array}{l}CD \bot SE\\CD \bot EF\end{array} \right. \Rightarrow CD \bot \left( {SEF} \right)\).

Trong \(\left( {SEF} \right)\) kẻ \(EK \bot SF\) ta có :

 \(\left\{ \begin{array}{l}EK \bot SF\\EK \bot CD\end{array} \right. \Rightarrow EK \bot \left( {SCD} \right) \Rightarrow d\left( {E;\left( {SCD} \right)} \right) = EK\).

Vì \(AB//CD \Rightarrow AB//\left( {SCD} \right) \Rightarrow d\left( {E;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right) = a\).

Kẻ \(SH \bot EF\) ta có \(\left\{ \begin{array}{l}SH \bot EF\\CD \bot \left( {SEF} \right) \Rightarrow SH \bot CD\end{array} \right. \Leftrightarrow SH \bot \left( {ABCD} \right)\).

Ta có \({S_{\Delta SEF}} = \frac{1}{2}SH.EF = \frac{1}{2}EK.SF \Leftrightarrow SH.2a = a.SF \Rightarrow 2SH = SF\).

Đặt \(SH = x \Rightarrow SF = 2a\).

Ta có \(AE = \frac{1}{2}AB = a \Rightarrow SE = \sqrt {S{A^2} - A{E^2}}  = \sqrt {2{a^2} - {a^2}}  = a\)

Áp dụng định lí Cosin trong tam giác SEF ta có : \(\cos \angle SEF = \frac{{S{E^2} + E{F^2} - S{F^2}}}{{2SE.EF}} = \frac{{{a^2} + 4{a^2} - 4{x^2}}}{{2.a.2a}} = \frac{{5{a^2} - 4{x^2}}}{{4{a^2}}}\)

Xét tam giác vuông SEH có \(EH = SE.\cos \angle SEF = a.\frac{{5{a^2} - 4{x^2}}}{{4{a^2}}} = \frac{{5{a^2} - 4{x^2}}}{{4a}}\).

Áp dụng định lí Pytago trong tam giác vuông SHE có :

\(\begin{array}{l}S{H^2} + E{H^2} = S{E^2} \Leftrightarrow {x^2} + {\left( {\frac{{5{a^2} - 4{x^2}}}{{4a}}} \right)^2} = {a^2}\\ \Leftrightarrow 16{a^2}{x^2} + 25{a^4} - 40{a^2}{x^2} + 16{x^4} = 16{a^4}\\ \Leftrightarrow 9{a^4} - 24{a^2}{x^2} + 16{x^4} = 0 \Leftrightarrow {\left( {3{a^2} - 4{x^2}} \right)^2} = 0\\ \Leftrightarrow 4{x^2} = 3{a^2} \Leftrightarrow x = \frac{{a\sqrt 3 }}{2} = SH\end{array}\)

Vậy \({V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}} = \frac{1}{3}\frac{{a\sqrt 3 }}{2}.4{a^2} = \frac{{2{a^3}\sqrt 3 }}{3}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com