Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp tứ giác đều \(S.ABCD,\) cạnh đáy có độ dài \(r\sqrt 2 ,\) chiều cao \(h\) . Xét hình

Câu hỏi số 305023:
Vận dụng cao

Cho hình chóp tứ giác đều \(S.ABCD,\) cạnh đáy có độ dài \(r\sqrt 2 ,\) chiều cao \(h\) . Xét hình nón \(\left( {\rm N} \right)\) ngoại tiếp khối chóp. Gọi \({V_1},\,{V_2}\) lần lượt là thể tích hình nón \(\left( {\rm N} \right)\) và thể tích khối cầu nội tiếp \(\left( {\rm N} \right)\) . Tìm tỉ số \(\frac{h}{r}\) sao cho \(\frac{{{V_1}}}{{{V_2}}}\) đạt giá trị nhỏ nhất?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:305023
Giải chi tiết

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO = h\), do ABCD là hình vuông cạnh \(r\sqrt 2 \) nên \(OA = \frac{{r\sqrt 2 .\sqrt 2 }}{2} = r\).

Do đó hình nón \(\left( N \right)\) ngoại tiếp khối chóp có chiều cao bằng \(h\) và bán kính đáy bằng \(r\)

\( \Rightarrow {V_1} = {V_{\left( N \right)}} = \frac{1}{3}\pi {r^2}h\).

Xét một thiết diện qua trục của hình nón là tam giác SAC, gọi I là tâm đường tròn nội tiếp tam giác SAC. Ta có I chính là tâm khối cầu nội tiếp hình nón \(\left( N \right)\).

Xét tam giác vuông SAO có: \(SA = \sqrt {S{O^2} + O{A^2}}  = \sqrt {{h^2} + {r^2}}  = SC\)

\( \Rightarrow {p_{SAC}} = \frac{{SA + SC + AC}}{2} = \frac{{2\sqrt {{h^2} + {r^2}}  + 2r}}{2} = \sqrt {{h^2} + {r^2}}  + r\)

Gọi \({R_S}\) là bán kính cầu nội tiếp hình nón \(\left( N \right)\) ta có \({r_S} = \frac{{{S_{SAC}}}}{{{p_{SAC}}}} = \frac{{\frac{1}{2}SO.AC}}{{\sqrt {{h^2} + {r^2}}  + r}} = \frac{{\frac{1}{2}h.2r}}{{\sqrt {{h^2} + {r^2}}  + r}} = \frac{{hr}}{{\sqrt {{h^2} + {r^2}}  + r}}\)

\( \Rightarrow {V_2} = \frac{4}{3}\pi R_S^3 = \frac{4}{3}\pi \frac{{{{\left( {hr} \right)}^3}}}{{{{\left( {\sqrt {{h^2} + {r^2}}  + r} \right)}^3}}}\)

\( \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{\dfrac{1}{3}\pi {r^2}h}}{{\dfrac{4}{3}\pi \dfrac{{{{\left( {hr} \right)}^3}}}{{{{\left( {\sqrt {{h^2} + {r^2}}  + r} \right)}^3}}}}} = \dfrac{{{{\left( {\sqrt {{h^2} + {r^2}}  + r} \right)}^3}}}{{4r{h^2}}} = \dfrac{{\dfrac{{{{\left( {\sqrt {{h^2} + {r^2}}  + r} \right)}^3}}}{{{h^3}}}}}{{\dfrac{{4r{h^2}}}{{{h^3}}}}} = \dfrac{{\sqrt {1 + \dfrac{{{r^2}}}{{{h^2}}}}  + \dfrac{r}{h}}}{{4\dfrac{r}{h}}}\)

Đặt \(t = \dfrac{r}{h}\) ta có \(f\left( t \right) = \dfrac{{\sqrt {1 + {t^2}}  + t}}{{4t}}\).

Thử từng đáp án ta có:

Đáp án A: \(\dfrac{h}{r} = \dfrac{{5\sqrt 2 }}{2} \Rightarrow t = \dfrac{{\sqrt 2 }}{5} \Rightarrow f\left( t \right) = \dfrac{{2 + 3\sqrt 6 }}{8} \approx 1,16\).

Đáp án B : \(\dfrac{h}{r} = 2 \Rightarrow t = \dfrac{1}{2} \Rightarrow f\left( t \right) = \dfrac{{1 + \sqrt 5 }}{4} \approx 0,81\)

Đáp án C: \(\dfrac{h}{r} = 2\sqrt 2  \Rightarrow t = \dfrac{{\sqrt 2 }}{4} \Rightarrow f\left( t \right) = 1\).

Đáp án D: \(\dfrac{h}{r} = 3 \Rightarrow t = \dfrac{1}{3} \Rightarrow f\left( t \right) = \dfrac{{1 + \sqrt {10} }}{4} \approx 1,04\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com