Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một sợi dây thép cho chiều dài \(8m,\) được chia thành 2 phần. Phần thứ nhất được uốn

Câu hỏi số 305024:
Vận dụng

Một sợi dây thép cho chiều dài \(8m,\) được chia thành 2 phần. Phần thứ nhất được uốn thành hình vuông, phần thứ hai được uốn thành hình tam giác đều. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu để diện tích hai hình thu được là nhỏ nhất?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:305024
Phương pháp giải

+) Gọi chiều dài phần thứ nhất dùng để uốn thành hình vuông là \(8 - x\,\,\left( m \right)\) thì chiều dài phần thứ hai dùng để uốn thành tam giác đều là \(x\,\,\left( m \right)\;\;\left( {0 < x < 8} \right).\)

+) Tính lần lượt cạnh của hình vuông, cạnh của tam giác đều, từ đó tính diện tích S1 của hình vuông và diện tích S2 của tam giác đều.

+) Tính tổng diện tích \(S = {S_1} + {S_2}\). Tam thức bậc hai \(y = a{x^2} + bx + c\,\,\left( {a > 0} \right)\) đạt GTNN tại \(x = \frac{{ - b}}{{2a}}\).

Giải chi tiết

Gọi chiều dài phần thứ nhất dùng để uốn thành hình vuông là \(8 - x\,\,\left( m \right)\) thì chiều dài phần thứ hai dùng để uốn thành tam giác đều là \(x\,\,\left( m \right)\;\;\left( {0 < x < 8} \right).\)

Khi đó ta có cạnh của hình vuông là \(\frac{{8 - x}}{4}\,\,\left( m \right) \Rightarrow \) Diện tích hình vuông là \({S_1} = \frac{{{{\left( {8 - x} \right)}^2}}}{{16}}\,\,\left( {{m^2}} \right)\).

Cạnh của tam giác đều là \(\frac{x}{3}\,\,\left( m \right) \Rightarrow \) Diện tích tam giác đều là  \({S_2} = {\left( {\frac{x}{3}} \right)^2}\frac{{\sqrt 3 }}{4}\,\,\left( {{m^2}} \right)\).

Tổng diện tích hai hình thu được là

\(S = {S_1} + {S_2} = \frac{{{{\left( {8 - x} \right)}^2}}}{{16}}\, + {\left( {\frac{x}{3}} \right)^2}\frac{{\sqrt 3 }}{4} = \frac{{{{\left( {8 - x} \right)}^2}}}{{16}} + \frac{{{x^2}\sqrt 3 }}{{36}} = \frac{{9{{\left( {8 - x} \right)}^2} + 4\sqrt 3 {x^2}}}{{144}} = \frac{{\left( {9 + 4\sqrt 3 } \right){x^2} - 144x + 576}}{{144}}\)

Ta có \({S_{\min }} \Leftrightarrow {\left[ {\left( {9 + 4\sqrt 3 } \right){x^2} - 144x + 576} \right]_{\min }} \Leftrightarrow x = \frac{{ - b}}{{2a}} = \frac{{144}}{{2\left( {9 + 4\sqrt 3 } \right)}} = \frac{{72}}{{9 + 4\sqrt 3 }}\).

Vậy cạnh của tam giác đều là \(\frac{x}{3} = \frac{{24}}{{9 + 4\sqrt 3 }}\) (m).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com