Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới.

Câu hỏi số 305957:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới. Xét hàm số \(g\left( x \right) = f\left( {2{x^3} + x - 1} \right) + m.\) Tìm \(m\) để \(\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) =  - 10.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:305957
Phương pháp giải

Khảo sát hàm số \(g\left( x \right)\) trên đoạn \(\left[ {0;1} \right]\), tìm \(\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right)\), từ đó suy ra m.

Giải chi tiết

Ta có: \(g\left( x \right) = f\left( {2{x^3} + x - 1} \right) + m \Rightarrow g'\left( x \right) = \left( {6{x^2} + 1} \right).f'\left( {2{x^3} + x - 1} \right)\)

Với \(x \in \left[ {0;1} \right]\) thì  \(\left( {2{x^3} + x - 1} \right) \in \left[ { - 1;\;2} \right]\).

Quan sát đồ thị hàm số \(y = f\left( x \right)\), ta thấy hàm số \(y = f\left( x \right)\) nghịch biến trên đoạn \(\left[ { - 1;1} \right]\)

\( \Rightarrow f'\left( x \right) \le 0,\,\,x \in \left[ { - 1;\;1} \right]\)

\( \Rightarrow f'\left( {2{x^3} + x - 1} \right) \le 0,\,\,\forall x \in \left[ {0;1} \right] \Rightarrow g'\left( x \right) \le 0,\,\,\forall x \in \left[ { - 1;\;2} \right]\) (do \(6{x^2} + 1 > 0,\forall x\))

\( \Rightarrow g\left( x \right)\) nghịch biến trên \(\left[ {0;1} \right] \Rightarrow \)\(\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right) = f\left( { - 1} \right) + m = 3 + m\)

Theo đề bài, ta có: \(3 + m =  - 10 \Leftrightarrow m =  - 13\).

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com