Với \(a,\,\,b\) là hai số thực khác 0 tùy ý, \(\ln \left( {{a^2}{b^4}} \right)\) bằng:
Với \(a,\,\,b\) là hai số thực khác 0 tùy ý, \(\ln \left( {{a^2}{b^4}} \right)\) bằng:
Đáp án đúng là: A
Quảng cáo
Sử dụng các công thức:
\(\begin{array}{l}{\log _a}f\left( x \right) + {\log _a}g\left( x \right) = {\log _a}\left[ {f\left( x \right)g\left( x \right)} \right]\,\,\left( {0 < a \ne 1,\,f\left( x \right) > 0,\,\,g\left( x \right) > 0} \right)\\{\log _{{a^n}}}{b^m} = \dfrac{m}{n}{\log _a}b\,\,\left( {0 < a \ne 1,\,\,b > 0} \right)\end{array}\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












