Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình

Câu hỏi số 306593:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.

 

Tập hợp tất cả các giá trị thực của tham số m để phương trình \(f\left( {\cos 2x} \right) - 2m - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - \dfrac{\pi }{3};\dfrac{\pi }{4}} \right)\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:306593
Phương pháp giải

+) Đặt \(t = \cos 2x\), tìm khoảng giá trị của t.

+) Đưa phương trình về dạng \(f\left( t \right) = 2m + 1\). Số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f\left( t \right)\) và đường thẳng \(y = 2m + 1\) song song với trục hoành.

Giải chi tiết

Đặt \(t = \cos 2x\), vì \(x \in \left( { - \dfrac{\pi }{3};\dfrac{\pi }{4}} \right) \Rightarrow 2x \in \left( { - \dfrac{{2\pi }}{3};\dfrac{\pi }{2}} \right) \Rightarrow \cos 2x \in \left[ { - 1;0} \right)\).

Phương trình trở thành \(f\left( t \right) = 2m + 1\) có nghiệm thuộc \(\left( { - \dfrac{1}{2};1} \right]\).

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f\left( t \right)\) và đường thẳng \(y = 2m + 1\) song song với trục hoành.

Dựa vào BBT ta có để phương trình trở thành \(f\left( t \right) = 2m + 1\) có nghiệm thuộc \(\left( { - \dfrac{1}{2};1} \right]\) thì \(1 \le 2m + 1 \le 2 \Leftrightarrow 0 \le m \le \dfrac{1}{2}\).

Vậy \(m \in \left[ {0;\dfrac{1}{2}} \right]\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com