Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tất cả các giá trị của tham số \(m\) để hàm số \(y = {x^4} - 2\left( {m - 1} \right){x^2} + m - 2\)

Câu hỏi số 306609:
Vận dụng

Tất cả các giá trị của tham số \(m\) để hàm số \(y = {x^4} - 2\left( {m - 1} \right){x^2} + m - 2\) đồng biến trên \(\left( {1;5} \right)\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:306609
Phương pháp giải

+) Tính y’.

+) Dựa vào giá trị của m, xét dấu y’ và tìm điều kiện để hàm số có \(y' > 0\,\,\forall x \in \left( {1;5} \right)\).

Giải chi tiết

Ta có: \(y' = 4{x^3} - 4\left( {m - 1} \right)x = 0 \Leftrightarrow 4x\left( {{x^2} - m + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m - 1\end{array} \right.\).

TH1: \(m \le 1 \Rightarrow y' = 0 \Leftrightarrow x = 0\).

\( \Rightarrow \) Hàm số đồng biến trên \(\left( {0; + \infty } \right)\) và nghịch biến trên \(\left( { - \infty ;0} \right)\).

\( \Rightarrow \) Hàm số đồng biến trên \(\left( {1;5} \right)\) (tm).

TH2: \(m > 1 \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \sqrt {m - 1} \\x =  - \sqrt {m - 1} \end{array} \right.\)

Bảng xét dấu \(y'\):

 Dựa vào bảng xét dấu ta thấy để hàm số đồng biến trên \(\left( {1;5} \right) \Leftrightarrow \sqrt {m - 1}  \le 1 \Leftrightarrow m \le 2\).

\( \Rightarrow 1 < m \le 2\).

Kết hợp 2 trường hợp ta có \(m \le 2\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com