Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2019;2} \right]\) để phương trình

Câu hỏi số 307496:
Vận dụng cao

Số giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2019;2} \right]\) để phương trình \(\left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2x - m\) có đúng hai nghiệm thực là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:307496
Giải chi tiết

ĐKXĐ : \(x > \frac{{ - 1}}{4}\)

\(\begin{array}{l}\left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2x - m\\ \Leftrightarrow \left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2\left( {x - 1} \right) + 2 - m\\ \Leftrightarrow \left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right) - 2} \right] = 2 - m\end{array}\)

Xét \(x \ge 1 \Rightarrow x - 1 \ge 0\)

Ta có \(\left\{ \begin{array}{l}4x + 1 \ge 5 \Rightarrow {\log _3}\left( {4x + 1} \right) \ge {\log _3}5\\2x + 1 \ge 3 \Rightarrow {\log _5}\left( {2x + 1} \right) \ge {\log _5}3\end{array} \right. \Rightarrow {\log _3}\left( {4x + 1} \right) + {\log _5}\left( {2x + 1} \right) \ge {\log _3}5 + {\log _5}3 > 2\)

 \( \Rightarrow {\log _3}\left( {4x + 1} \right) + {\log _5}\left( {2x + 1} \right) - 2 > 0\)

\( \Rightarrow VT \ge 0\).

Xét hàm số \(f\left( x \right) = \left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right) - 2} \right]\) ta có :

ĐKXĐ : \(x > \frac{{ - 1}}{4}\).

\(f'\left( x \right) = {\log _3}\left( {4x + 1} \right) + {\log _5}\left( {2x + 1} \right) - 2 + \left( {x - 1} \right)\left[ {\frac{4}{{\left( {4x + 1} \right)\ln 3}} + \frac{2}{{\left( {2x + 1} \right)\ln 5}}} \right] > 0\,\,\forall x \ge 1\)

\( \Rightarrow \) Hàm số đồng biến trên \(\left( {1; + \infty } \right)\).

Xét \(\frac{{ - 1}}{4} < x < 1\)

PT : \( \Leftrightarrow \left( {1 - x} \right)\left[ {2 - {{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2 - m\)

Xét hàm số \(f\left( x \right) = \left( {1 - x} \right)\left[ {2 - {{\log }_3}\left( {4x + 1} \right) - {{\log }_5}\left( {2x + 1} \right)} \right]\) ta có :

\(f'\left( x \right) =  - 2 + {\log _3}\left( {4x + 1} \right) + {\log _5}\left( {2x + 1} \right) + \left( {1 - x} \right)\left[ { - \frac{4}{{\left( {4x + 1} \right)\ln 3}} - \frac{2}{{\left( {2x + 1} \right)\ln 5}}} \right] < 0\,\,\forall x \in \left( {\frac{{ - 1}}{4};1} \right) \Rightarrow \) Hàm số nghịch biến trên \(\left( { - \frac{1}{4};1} \right)\).

Từ đó ta có BBT của hàm số \(f\left( x \right) = \left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right) - 2} \right]\) như sau :

\( \Rightarrow \) Để phương trình có 2 nghiệm thực phân biệt thì \(2 - m > 0 \Leftrightarrow m < 2\).

Kết hợp điều kiện đề bài \( \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2019;2} \right)\end{array} \right. \Rightarrow \) Có 2021 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com