Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\). Phương trình mặt

Câu hỏi số 308801:
Vận dụng

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\). Phương trình mặt phẳng \(\left( Q \right)\) với \(\left( Q \right)\) song song với \(\left( P \right)\) và khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) bằng \(\dfrac{7}{3}\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:308801
Phương pháp giải

+) Gọi phương trình mặt phẳng \(\left( Q \right)\) theo phương trình mặt phẳng \(\left( P \right)\).

+) Sử dụng công thức tính khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

Giải chi tiết

Do \(\left( Q \right)\) song song với \(\left( P \right)\) nên phương trình mặt phẳng \(\left( Q \right)\) có dạng \(\left( Q \right):\,\,x + 2y + 2z + d = 0\,\,\left( {d \ne  - 10} \right)\).

Ta có: \(d\left( {M;\left( Q \right)} \right) = \dfrac{7}{3} \Leftrightarrow \dfrac{{\left| {10 + d} \right|}}{3} = \dfrac{7}{3} \Leftrightarrow \left| {10 + d} \right| = 7 \Leftrightarrow \left[ \begin{array}{l}d =  - 3\\d =  - 17\end{array} \right.\).

Vậy phương trình mặt phẳng \(\left( Q \right)\) là \(x + 2y + 2z - 3 = 0,\,\,x + 2y + 2z - 17 = 0\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com