Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(BC = a,\,\,BB' = a\sqrt 3 \). Góc giữa hai mặt phẳng

Câu hỏi số 308887:
Vận dụng

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(BC = a,\,\,BB' = a\sqrt 3 \). Góc giữa hai mặt phẳng \(\left( {A'B'C} \right)\) và \(\left( {ABC'D'} \right)\) bằng :

Đáp án đúng là: C

Quảng cáo

Câu hỏi:308887
Phương pháp giải

Góc giữa 2 mặt phẳng là góc giữa 2 đường thẳng lần lượt thuộc 2 mặt phẳng và vuông góc với giao tuyến của 2 mặt phẳng đó.

Giải chi tiết

Ta có: \(\left( {A'B'C} \right) \equiv \left( {A'B'CD} \right) \Rightarrow \angle \left( {\left( {A'B'C} \right);\left( {ABC'D'} \right)} \right) = \angle \left( {\left( {A'B'CD} \right);\left( {ABC'D'} \right)} \right)\)

Gọi \(O = AD \cap A'D,\,\,O' = BC' \cap B'C \Rightarrow \left( {A'B'CD} \right) \cap \left( {ABC'D'} \right) = OO'\).

Ta có \(ADD'A'\) và \(BCC'B'\) là các hình chữ nhật \( \Rightarrow O\) là trung điểm của \(AD',\,\,A'D\). \(O'\) là trung điểm của \(B'C,\,\,BC'\).

Ta có \(\left\{ \begin{array}{l}AB//C'D'\\AB = C'D'\end{array} \right. \Rightarrow ABC'D'\) là hình bình hành.

Lại có \(AB \bot \left( {BCC'D'} \right) \Rightarrow AB \bot BC' \Rightarrow ABC'D'\) là hình chữ nhật \( \Rightarrow OO' \bot AD'\).

Hoàn toàn tương tự ra chứng minh được \(OO' \bot A'D\).

Ta có \(\left\{ \begin{array}{l}\left( {ABC'D'} \right) \cap \left( {A'B'CD} \right) = OO'\\\left( {ABC'D'} \right) \supset AD' \bot OO'\\\left( {A'B'CD} \right) \supset A'D \bot OO'\end{array} \right. \Rightarrow \angle \left( {\left( {A'B'CD} \right);\left( {ABC'D'} \right)} \right) = \angle \left( {AD';A'D} \right)\).

Ta có : \(OA = \dfrac{1}{2}A'D = \dfrac{1}{2}\sqrt {A{D^2} + AA{'^2}}  = \dfrac{1}{2}\sqrt {{a^2} + 3{a^2}}  = a = OD \Rightarrow \Delta OAD\) đều \( \Rightarrow \angle AOD = {60^0}\) .

Vậy \(\angle \left( {AD';A'D} \right) = \angle AOD = {60^0}\).

Chú ý khi giải

Góc giữa 2 mặt phẳng là góc nhọn.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com