Tính thể tích \(V\) của phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 4\), biết
Tính thể tích \(V\) của phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 4\), biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trụ \(Ox\) tại điểm có hoành độ \(x\) \(\left( {1 \le x \le 4} \right)\) thì được thiết diện là một hình lục giác đều có độ dài cạnh là \(2x\).
Đáp án đúng là: B
Quảng cáo
- Tính diện tích thiết diện theo \(x\).
- Tính thể tích theo công thức \(V = \int\limits_a^b {S\left( x \right)dx} \).
Nhiều em có thể sẽ nhớ nhầm công thức thành \(V = \pi \int\limits_a^b {S\left( x \right)dx} \) dẫn đến chọn nhầm đáp án A là sai.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












