Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có tất cả các cạnh đều bằng \(a\). Tan của góc giữa mặt bên và mặt

Câu hỏi số 310015:
Vận dụng

Cho hình chóp \(S.ABCD\) có tất cả các cạnh đều bằng \(a\). Tan của góc giữa mặt bên và mặt đáy bằng :

Đáp án đúng là: A

Quảng cáo

Câu hỏi:310015
Phương pháp giải

+) Xác định góc giữa mặt bên và đáy là góc giữa hai đường thẳng lần lượt thuộc 2 mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng đó.

+) Tính tan của góc xác định được.

Giải chi tiết

Gọi \(O = AC \cap BD\). Do \(S.ABCD\) là chóp đều \( \Rightarrow SO \bot \left( {ABCD} \right)\).

Gọi \(M\) là trung điểm của \(CD\) ta có: \(OM\) là đường trung bình của tam giác \(BCD \Rightarrow OM//BC\).

\( \Rightarrow OM \bot CD\).

Ta có: \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\,\,\left( {SO \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right) \Rightarrow CD \bot SM\).

\(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {SCD} \right) \supset SM \bot CD\\\left( {ABCD} \right) \supset OM \bot CD\end{array} \right. \Rightarrow \angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = \angle \left( {SM;OM} \right) = \angle SMO\).

Ta có \(OM = \dfrac{a}{2}\). \(\Delta SCD\) đều cạnh \(a \Rightarrow SM = \dfrac{{a\sqrt 3 }}{2}\).

Áp dụng định lí Pytago trong tam giác vuông \(SOM\) ta có: \(SO = \sqrt {S{M^2} - O{M^2}}  = \sqrt {\dfrac{{3{a^2}}}{4} - \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt 2 }}{2}\).

\( \Rightarrow \tan \angle SMO = \dfrac{{SO}}{{OM}} = \dfrac{{\dfrac{{a\sqrt 2 }}{2}}}{{\dfrac{a}{2}}} = \sqrt 2 \).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com