Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong khai triển \({\left( {{a^2} + \frac{1}{b}} \right)^7}\), số hạng thứ 5 là:

Câu hỏi số 310393:
Thông hiểu

Trong khai triển \({\left( {{a^2} + \frac{1}{b}} \right)^7}\), số hạng thứ 5 là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:310393
Phương pháp giải

Áp dụng Công thức khai triển nhị thức Newton: \({(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^{n - i}}.{y^i}} \).

Giải chi tiết

Ta có: \({\left( {{a^2} + \frac{1}{b}} \right)^7} = \sum\limits_{i = 0}^7 {C_7^i{{\left( {{a^2}} \right)}^{7 - i}}.{{\left( {{b^{ - 1}}} \right)}^i}} \)

\( \Rightarrow \) Số hạng thức \(5\) trong khai triển ứng với \(i = 4\) và bằng  \(C_7^4{\left( {{a^2}} \right)^3}.{\left( {{b^{ - 1}}} \right)^4} = 35{a^6}{b^{ - 4}}.\)

Chọn: D

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com