Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Gọi \(F\left( x \right)\) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right) =

Câu hỏi số 310849:
Vận dụng

Gọi \(F\left( x \right)\) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right) = {x^2}{e^{a\,x}}\left( {a \ne 0} \right),\) sao cho \(F\left( {\frac{1}{a}} \right) = F\left( 0 \right) + 1\). Chọn mệnh đề đúng trong các mệnh đề sau.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:310849
Phương pháp giải

Sử dụng phương pháp nguyên hàm từng phần hai lần để tìm \(F\left( x \right)\).               

Giải chi tiết

Ta có \(f\left( x \right) = {x^2}{e^{ax}} \Rightarrow F\left( x \right) = \int\limits_{}^{} {{x^2}{e^{ax}}dx} \)

Đặt \(\left\{ \begin{array}{l}u = {x^2}\\dv = {e^{ax}}dx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = 2xdx\\v = \frac{{{e^{ax}}}}{a}\end{array} \right.\)

\( \Rightarrow F\left( x \right) = {x^2}.\frac{{{e^{ax}}}}{a} - \frac{2}{a}\int\limits_{}^{} {x.{e^{ax}}dx}  + C\)

Xét  \({I_1} = \int\limits_{}^{} {x.{e^{ax}}dx} \). Đặt \(\left\{ \begin{array}{l}a = x\\db = {e^{ax}}dx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}da = dx\\b = \frac{{{e^{ax}}}}{a}\end{array} \right. \Rightarrow {I_1} = x\frac{{{e^{ax}}}}{a} - \frac{1}{a}\int\limits_{}^{} {{e^{ax}}dx}  + C = x\frac{{{e^{ax}}}}{a} - \frac{{{e^{ax}}}}{{{a^2}}} + C\)

\( \Rightarrow F\left( x \right) = {x^2}.\frac{{{e^{ax}}}}{a} - \frac{2}{a}\left( {x\frac{{{e^{ax}}}}{a} - \frac{{{e^{ax}}}}{{{a^2}}}} \right) + C = \frac{{{x^2}{e^{ax}}}}{a} - \frac{{2x{e^{ax}}}}{{{a^2}}} + \frac{{2{e^{ax}}}}{{{a^3}}}\)

\( \Rightarrow F\left( 0 \right) + 1 = \frac{2}{{{a^3}}} + 1\)  và \(F\left( {\frac{1}{a}} \right) = \frac{{\frac{1}{{{a^2}}}e}}{a} - \frac{{2\frac{1}{a}e}}{{{a^2}}} + \frac{{2e}}{{{a^3}}} = \frac{e}{{{a^3}}} - \frac{{2e}}{{{a^3}}} + \frac{{2e}}{{{a^3}}} = \frac{e}{{{a^3}}}\)

Theo bài ra ta có \(\frac{e}{{{a^3}}} = \frac{2}{{{a^3}}} + 1 = \frac{{2 + {a^3}}}{{{a^3}}} \Leftrightarrow a = \sqrt[3]{{e - 2}} \approx 0,9\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com