Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ đứng tam giác \(ABC.A'B'C'\) . Gọi \(M,{\rm N},P,Q\) là các điểm lần lượt thuộc các

Câu hỏi số 310917:
Vận dụng

Cho lăng trụ đứng tam giác \(ABC.A'B'C'\) . Gọi \(M,{\rm N},P,Q\) là các điểm lần lượt thuộc các cạnh \(AA',\,BB',CC',\,B'C'\) thỏa mãn \(\frac{{AM}}{{AA'}} = \frac{1}{2},\,\frac{{B{\rm N}}}{{BB'}} = \frac{1}{3},\,\frac{{CP}}{{CC'}} = \frac{1}{4},\,\,\frac{{C'Q}}{{C'B'}} = \frac{1}{5}\). Gọi \({V_1},\,{V_2}\) lần lượt là thể tích khối tứ diện \(MNPQ\) và khối lăng trụ \(ABC.A'B'C'.\) Tính tỷ số \(\frac{{{V_1}}}{{{V_2}}}.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:310917
Phương pháp giải

+) Sử dụng công thức tính thể tích \({V_1} = {V_{MNPQ}} = \frac{1}{3}d\left( {M;\left( {NPQ} \right)} \right).{S_{NPQ}}\), \({V_2} = {V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCC'B'}} = \frac{3}{2}.\frac{1}{3}d\left( {A;\left( {BCC'B'} \right)} \right).{S_{BCC'B'}}\).

+) So sánh thể \(d\left( {M;\left( {NPQ} \right)} \right)\) và \(d\left( {A;\left( {BCC'B'} \right)} \right)\). So sánh diện tích \({S_{NPQ}}\) và \({S_{BCC'B'}}\) từ đó suy ra tỉ lệ thể tích.

Giải chi tiết

Ta có \({V_1} = {V_{MNPQ}} = \frac{1}{3}d\left( {M;\left( {NPQ} \right)} \right).{S_{NPQ}}\), \({V_2} = {V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCC'B'}} = \frac{3}{2}.\frac{1}{3}d\left( {A;\left( {BCC'B'} \right)} \right).{S_{BCC'B'}}\).

Ta có: \(d\left( {M;\left( {NPQ} \right)} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\).

Đăt \(BC = x,\,\,BB' = y\) ta có \({S_{BCC'B'}} = xy\)

\(\begin{array}{l}{S_{BCPN}} = \frac{{\left( {BN + CP} \right).BC}}{2} = \frac{{\left( {\frac{y}{3} + \frac{y}{4}} \right).x}}{2} = \frac{7}{{24}}xy\\{S_{B'NQ}} = \frac{1}{2}B'N.B'Q = \frac{1}{2}.\frac{2}{3}y.\frac{4}{5}x = \frac{4}{{15}}xy\\{S_{C'PQ}} = \frac{1}{2}C'P.C'Q = \frac{1}{2}.\frac{3}{4}y.\frac{1}{5}x = \frac{3}{{40}}xy\\ \Rightarrow {S_{NPQ}} = xy - \frac{7}{{24}}xy - \frac{4}{{15}}xy - \frac{3}{{40}}xy = \frac{{11}}{{30}}xy = \frac{{11}}{{30}}{S_{BCC'B'}}\end{array}\)

\(\begin{array}{l} \Rightarrow {V_1} = {V_{MNPQ}} = \frac{1}{3}d\left( {A;\left( {BCC'B'} \right)} \right).\frac{{11}}{{30}}{S_{BCC'B'}} = \frac{{11}}{{90}}d\left( {A;\left( {BCC'B'} \right)} \right).{S_{BCC'B'}}\\ \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{11}}{{90}}d\left( {A;\left( {BCC'B'} \right)} \right).{S_{BCC'B'}}}}{{\frac{3}{2}.\frac{1}{3}d\left( {A;\left( {BCC'B'} \right)} \right).{S_{BCC'B'}}}} = \frac{{11}}{{45}}.\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com