Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đạo hàm thỏa mãn \(f'\left( x \right) +

Câu hỏi số 311248:
Vận dụng

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đạo hàm thỏa mãn \(f'\left( x \right) + 2f\left( x \right) = 1,\,\,\forall x \in \mathbb{R}\) và \(f\left( 0 \right) = 1\). Tích phân \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:311248
Phương pháp giải

\({\left( {f.g} \right)^\prime } = f'.g + f.g'\).

Giải chi tiết

Ta có: \(f'\left( x \right) + 2f\left( x \right) = 1 \Leftrightarrow {e^{2x}}f'\left( x \right) + {e^{2x}}.2f\left( x \right) = {e^{2x}} \Leftrightarrow {\left( {{e^{2x}}.f\left( x \right)} \right)^\prime } = {e^{2x}}\)\( \Rightarrow {e^{2x}}.f\left( x \right) = \int {{e^{2x}}} dx \Leftrightarrow {e^{2x}}.f\left( x \right) = \dfrac{1}{2}{e^{2x}} + C\)

Mà \(f\left( 0 \right) = 1\)\( \Rightarrow 1 = \dfrac{1}{2} + C \Leftrightarrow C = \dfrac{1}{2}\,\, \Rightarrow \)\({e^{2x}}.f\left( x \right) = \dfrac{1}{2}{e^{2x}} + \dfrac{1}{2} \Leftrightarrow f\left( x \right) = \dfrac{{{e^{2x}} + 1}}{{2{e^{2x}}}}\)

\(\int\limits_0^1 {f\left( x \right)dx}  = \int\limits_0^1 {\dfrac{{{e^{2x}} + 1}}{{2{e^{2x}}}}dx}  = \int\limits_0^1 {\left( {\dfrac{1}{2} + \dfrac{1}{2}{e^{ - 2x}}} \right)dx}  = \left. {\left( {\dfrac{1}{2}x - \dfrac{1}{4}{e^{ - 2x}}} \right)} \right|_0^1 = \left( {\dfrac{1}{2} - \dfrac{1}{{4{e^2}}}} \right) - \left( { - \dfrac{1}{4}} \right) = \dfrac{3}{4} - \dfrac{1}{{4{e^2}}}\).

 

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com