Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị là đường cong

Câu hỏi số 311855:
Thông hiểu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị là đường cong trong hình vẽ bên dưới. Đặt \(g\left( x \right) = f\left( {{x^2}} \right)\). Tìm số nghiệm của phương trình \(g'\left( x \right) = 0\). 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:311855
Phương pháp giải

+) Sử dụng công thức tính đạo hàm hàm hợp: \(y = f\left( {u\left( x \right)} \right)\,\, \Rightarrow \,\,y' = f'\left( {u\left( x \right)} \right).u'\left( x \right)\).

+) Tìm số nghiệm phân biệt của phương trình \(g'\left( x \right) = 0\).

Giải chi tiết

\(g\left( x \right) = f\left( {{x^2}} \right)\)\( \Rightarrow g'\left( x \right) = 2x.f'\left( x^2 \right)\)

\(g'\left( x \right) = 0 \Leftrightarrow 2x.f'\left( {{x^2}} \right) = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
f'\left( {{x^2}} \right) = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
\left[ \matrix{
{x^2} = 0 \hfill \cr
{x^2} = c \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = \pm \sqrt c \hfill \cr} \right.\)

(với \(2 < c < 3\), được biểu diễn trên hình vẽ bên)

Vậy, phương trình \(g'\left( x \right) = 0\) có 3 nghiệm.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com