Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(E\left( {1; - 2;4} \right),\,F\left( {1; - 2; - 3}

Câu hỏi số 312453:
Vận dụng

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(E\left( {1; - 2;4} \right),\,F\left( {1; - 2; - 3} \right)\). Gọi M là điểm thuộc mặt phẳng (Oxy) sao cho tổng \(ME + MF\) có giá trị nhỏ nhất. Tìm tọa độ của điểm M

Đáp án đúng là: C

Quảng cáo

Câu hỏi:312453
Phương pháp giải

- Kiểm tra điểm \(E,\,F\) nằm khác phía so với mặt phẳng (Oxy)

- \(ME + MF\) khi và chỉ khi M là giao điểm của EF và (Oxy).

Giải chi tiết

\(E\left( {1; - 2;4} \right),\,F\left( {1; - 2; - 3} \right)\) có \({z_E} = 4 > 0,\,\,{z_F} =  - 3 < 0 \Rightarrow E,F\) nằm khác phía so với mặt phẳng (Oxy)

 

Khi đó, \(ME + MF \ge EF \Rightarrow {\left( {ME + MF} \right)_{\min }} = EF\) khi và chỉ khi \(M\) trùng với \({M_0}\) là giao điểm của EF và  (Oxy)

Ta có: \(\overrightarrow {EF}  = \left( {0;0; - 7} \right) \Rightarrow EF:\,\,\left\{ \begin{array}{l}x = 1\\y =  - 2\\z = 4 - t\end{array} \right. \Rightarrow \) Giả sử \({M_0}\left( {1; - 2;4 - t} \right)\)

Mà \({M_0} \in \left( {Oxy} \right) \Rightarrow 4 - t = 0 \Leftrightarrow t = 4\,\,\, \Rightarrow {M_0}\left( {1; - 2;0} \right)\)

Vậy, tổng \(ME + MF\) có giá trị nhỏ nhất khi và chỉ khi \(M\left( {1; - 2;0} \right)\).

Chọn: C

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com