Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa  \({x_1} + {x_2} =

Câu hỏi số 315429:
Thông hiểu

Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa  \({x_1} + {x_2} = 3\) khi

Đáp án đúng là: A

Quảng cáo

Câu hỏi:315429
Phương pháp giải

Đặt \({2^x} = t,\,\,t > 0\). Đưa phương trình về dạng phương trình bậc hai ẩn \(t\).

Sử dụng định lí Vi-ét.

Giải chi tiết

Đặt \({2^x} = t\,\,\left( {t > 0} \right)\). Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) (1) trở thành: \({t^2} - 2m\,t + 2m = 0\) (2)

Phương trình (1) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa  \({x_1} + {x_2} = 3 \Leftrightarrow \) Phương trình (2) có hai nghiệm \({t_1}\;,\;{t_2}\) thỏa  \({t_1},{t_2} > 0,\,\,\,\,\,{t_1}{t_2} = {2^{{x_1} + {x_2}}} = {2^3} = 8\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\2m = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m > 0\\2m = 8\end{array} \right. \Leftrightarrow m = 4\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com