Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f'\left( x \right).f\left( x \right) = {x^4} + {x^2}\). Biết

Câu hỏi số 315462:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f'\left( x \right).f\left( x \right) = {x^4} + {x^2}\). Biết \(f\left( 0 \right) = 2\). Tính \({f^2}\left( 2 \right)\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:315462
Phương pháp giải

Tích phân hai vế của \(f'\left( x \right).f\left( x \right) = {x^4} + {x^2}\), lấy cận là 0 và 2.

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,f'\left( x \right).f\left( x \right) = {x^4} + {x^2}\\ \Rightarrow \int\limits_0^2 {f'\left( x \right).f\left( x \right)dx}  = \int\limits_0^2 {\left( {{x^4} + {x^2}} \right)} dx\\ \Leftrightarrow \left. {\dfrac{1}{2}{f^2}\left( x \right)} \right|_0^2 = \left. {\left( {\dfrac{1}{5}{x^5} + \dfrac{1}{3}{x^3}} \right)} \right|_0^2\\ \Leftrightarrow \dfrac{1}{2}\left( {{f^2}\left( 2 \right) - {f^2}\left( 0 \right)} \right) = \left( {\dfrac{1}{5}.32 + \dfrac{1}{3}.8} \right) - 0\\ \Leftrightarrow {f^2}\left( 2 \right) - {2^2} = \dfrac{{272}}{{15}} \Leftrightarrow {f^2}\left( 2 \right) = \dfrac{{332}}{{15}}.\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com