Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\) cho \(A\left( {1; - 1;2} \right)\), \(B(-2,0,3)\), \(C\left( {0;1; - 2} \right)\). Gọi

Câu hỏi số 315473:
Vận dụng cao

Trong không gian \(Oxyz\) cho \(A\left( {1; - 1;2} \right)\), \(B(-2,0,3)\), \(C\left( {0;1; - 2} \right)\). Gọi \(M\left( {a;b;c} \right)\) là điểm thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho biểu thức \(S = \overrightarrow {MA} .\overrightarrow {MB}  + 2\overrightarrow {MB} .\overrightarrow {MC}  + 3\overrightarrow {MC} .\overrightarrow {MA} \) đạt giá trị nhỏ nhất. Khi đó \(T = 12a + 12b + c\) có giá trị là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:315473
Giải chi tiết

\(S = \overrightarrow {MA} .\overrightarrow {MB}  + 2\overrightarrow {MB} .\overrightarrow {MC}  + 3\overrightarrow {MC} .\overrightarrow {MA} \)

\( = \dfrac{1}{2}\left[ {M{A^2} + M{B^2} - {{\left( {\overrightarrow {MA}  - \overrightarrow {MB} } \right)}^2} + 2M{B^2} + 2M{C^2} - 2{{\left( {\overrightarrow {MB}  - \overrightarrow {MC} } \right)}^2} + 3M{A^2} + 3M{C^2} - 3{{\left( {\overrightarrow {MA}  - \overrightarrow {MC} } \right)}^2}} \right]\)

\( = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\)

Xác định tọa độ điểm \(I\left( {m;n;p} \right)\) sao cho

\(4\overrightarrow {IA}  + 3\overrightarrow {IB}  + 5\overrightarrow {IC}  = \overrightarrow 0  \Leftrightarrow \left\{ \begin{array}{l}4\left( {1 - m} \right) + 3\left( { - 2 - m} \right) + 5\left( {0 - m} \right) = 0\\4\left( { - 1 - n} \right) + 3\left( {0 - n} \right) + 5\left( {1 - n} \right) = 0\\4\left( {2 - p} \right) + 3\left( {3 - p} \right) + 5\left( { - 2 - p} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m =  - \dfrac{1}{6}\\n = \dfrac{1}{{12}}\\p = \dfrac{7}{{12}}\end{array} \right.\,\,\,\,\,\,\, \Rightarrow I\left( { - \dfrac{1}{6};\dfrac{1}{{12}};\dfrac{7}{{12}}} \right)\)

Khi đó:

\(\begin{array}{l}S = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {4{{\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)}^2} + 3{{\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)}^2} + 5{{\left( {\overrightarrow {MI}  + \overrightarrow {IC} } \right)}^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 2\overrightarrow {MI} .\left( {4\overrightarrow {IA}  + 3\overrightarrow {IB}  + 5\overrightarrow {IC} } \right) + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\,\,\left( {do\,\,4\overrightarrow {IA}  + 3\overrightarrow {IB}  + 5\overrightarrow {IC}  = \overrightarrow 0 } \right)\end{array}\)

\( \Rightarrow S\) đạt giá trị nhỏ nhất khi và chỉ khi \(MI\) ngắn nhất \( \Leftrightarrow M\) là hình chiếu của I lên (Oxy)

\( \Leftrightarrow M\left( { - \dfrac{1}{6};\dfrac{1}{{12}};0} \right)\,\,\, \Rightarrow \left\{ \begin{array}{l}a =  - \dfrac{1}{6}\\b = \dfrac{1}{{12}}\\c = 0\end{array} \right.\)\( \Rightarrow T = 12a + 12b + c = 12.\dfrac{{ - 1}}{6} + 12.\dfrac{1}{{12}} + 0 =  - 1\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com