Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(a,\,\,b,\,\,c\) là ba số thực dương, \(a > 1\) và thỏa mãn \(\log _a^2\left( {bc} \right) + {\log

Câu hỏi số 318518:
Vận dụng cao

Cho \(a,\,\,b,\,\,c\) là ba số thực dương, \(a > 1\) và thỏa mãn \(\log _a^2\left( {bc} \right) + {\log _a}{\left( {{b^3}{c^3} + \dfrac{{bc}}{4}} \right)^2} + 4 + \sqrt {4 - {c^2}}  = 0\). Số bộ \(\left( {a;b;c} \right)\) thỏa mãn điều kiện đã cho là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:318518
Phương pháp giải

Áp dụng BĐT cô si để đánh giá.

Giải chi tiết

Ta có: \(\log _a^2\left( {bc} \right) + {\log _a}{\left( {{b^3}{c^3} + \dfrac{{bc}}{4}} \right)^2} + 4 + \sqrt {4 - {c^2}} \,\,\left( {a > 1,\,\,\,b,c > 0} \right)\)

\(\begin{array}{l} = \log _a^2\left( {bc} \right) + 2{\log _a}\left( {bc.\left( {{b^2}{c^2} + \dfrac{1}{4}} \right)} \right) + 4 + \sqrt {4 - {c^2}}  \ge \,\log _a^2\left( {bc} \right) + 2{\log _a}\left( {bc.bc} \right) + 4 + \sqrt {4 - {c^2}} \\ = \log _a^2\left( {bc} \right) + 4{\log _a}\left( {bc} \right) + 4 + \sqrt {4 - {c^2}}  = {\left( {{{\log }_a}\left( {bc} \right) + 2} \right)^2} + \sqrt {4 - {c^2}}  \ge 0\end{array}\)

Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}bc = \dfrac{1}{2}\\{\log _a}\left( {bc} \right) + 2 = 0\\4 - {c^2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}bc = \dfrac{1}{2}\\{\log _a}\dfrac{1}{2} + 2 = 0\\{c^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}bc = \dfrac{1}{2}\\{\log _a}2 = 2\\{c^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \sqrt 2 \\b = \dfrac{1}{4}\\c = 2\end{array} \right.\)

Vậy số bộ \(\left( {a;b;c} \right)\)  thỏa mãn điều kiện đã cho là 1.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com