Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(SAB\) vuông tại \(A,\,\,\angle ABS = {60^0}\). Phân giác của góc \(\angle ABS\) cắt\(SA\)

Câu hỏi số 319386:
Vận dụng

Cho tam giác \(SAB\) vuông tại \(A,\,\,\angle ABS = {60^0}\). Phân giác của góc \(\angle ABS\) cắt\(SA\) tại \(I\). Vẽ nửa đường tròn tâm \(I\), bán kính \(IA\) (như hình vẽ). Cho miền tam giác \(SAB\) và nửa hình tròn quay xung quanh trục \(SA\) tạo nên các khối tròn xoay có thể tích tương ứng là \({V_1},\,\,{V_2}\). Khẳng định nào sau đây là đúng?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:319386
Phương pháp giải

Sử dụng công thức tính thể tích khối nón \(V = \dfrac{1}{3}\pi {R^2}h\) và công thức thể tích khối cầu \(V = \dfrac{4}{3}\pi {R^3}\).

Giải chi tiết

 

Quay miền tam giác \(SAB\) quanh cạnh \(SA\) ta được khối nón có chiều cao \(h = SA\), bán kính đáy \(R = AB\).

\( \Rightarrow {V_1} = \dfrac{1}{3}\pi .A{B^2}.SA\)

Quay nửa hình tròn quanh cạnh \(SA\) ta được khối cầu có bán kính \(IA\).

Áp dụng tính chất đường phân giác ta có: \(\dfrac{{IA}}{{IS}} = \dfrac{{AB}}{{SB}} = \cos {60^0} = \dfrac{1}{2} \Rightarrow IA = \dfrac{1}{2}IS \Rightarrow IA = \dfrac{1}{3}SA\)

\( \Rightarrow {V_2} = \dfrac{4}{3}\pi .I{A^3} = \dfrac{4}{3}\pi \dfrac{{S{A^3}}}{{27}} = \dfrac{{4\pi S{A^3}}}{{81}}\)

\( \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{\dfrac{1}{3}\pi .A{B^2}.SA}}{{\dfrac{{4\pi S{A^3}}}{{81}}}} = \dfrac{{27}}{4}.\dfrac{{A{B^2}}}{{S{A^2}}} = \dfrac{{27}}{4}{\left( {\dfrac{{AB}}{{SA}}} \right)^2} = \dfrac{{27}}{4}{\left( {\cot {{60}^0}} \right)^2} = \dfrac{{27}}{4}{\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} = \dfrac{9}{4}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com