Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong hệ trục tọa độ \(Oxyz\) cho điểm \(A\left( { - 1;3;5} \right),\,\,B\left( {2;6; - 1}

Câu hỏi số 319388:
Vận dụng cao

Trong hệ trục tọa độ \(Oxyz\) cho điểm \(A\left( { - 1;3;5} \right),\,\,B\left( {2;6; - 1} \right),\,\,C\left( { - 4; - 12;5} \right)\) và mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 5 = 0\). Gọi \(M\) là điểm di động trên \(\left( P \right)\). Giá trị nhỏ nhất của biểu thức \(S = \left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right|\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:319388
Phương pháp giải

+) Giả sử \(I\left( {a;b;c} \right)\) thỏa mãn \(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  = \overrightarrow 0 \). Xác định tọa độ điểm \(I\).

+) \({S_{\min }} \Leftrightarrow M\) là hình chiếu của \(I\) trên \(\left( P \right)\).

Giải chi tiết

Giả sử \(I\left( {a;b;c} \right)\) thỏa mãn \(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  = \overrightarrow 0 \)

Ta có \(\left\{ \begin{array}{l}\overrightarrow {IA}  = \left( { - 1 - a;\,\,3 - b;\,5 - c} \right)\\\overrightarrow {IB}  = \left( {2 - a;\,\,6 - b; - 1 - c} \right)\\\overrightarrow {IC}  = \left( { - 4 - a; - 12 - b;5 - c} \right)\end{array} \right. \Rightarrow \overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  = \left( { - 3a - 3; - 3b - 3; - 3c + 9} \right) = \overrightarrow 0 \)

\( \Leftrightarrow \left\{ \begin{array}{l}3a + 3 = 0\\3b + 3 = 0\\3c - 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b =  - 1\\c = 3\end{array} \right. \Rightarrow I\left( { - 1; - 1;3} \right)\)

Ta có : \(S = \left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right| = \left| {\overrightarrow {MI}  + \overrightarrow {IA}  + \overrightarrow {MI}  + \overrightarrow {IB}  + \overrightarrow {MI}  + \overrightarrow {IC} } \right| = \left| {3\overrightarrow {MI}  + \underbrace {\left( {\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC} } \right)}_{\overrightarrow 0 }} \right| = 3MI\)

Khi đó \({S_{\min }} \Leftrightarrow M{I_{\min }} \Leftrightarrow M\) là hình chiếu của \(I\) trên \(\left( P \right)\).

\( \Rightarrow M{I_{\min }} = d\left( {I;\left( P \right)} \right) = \dfrac{{\left| { - 1 + 2\left( { - 1} \right) - 2.3 - 5} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} }} = \dfrac{{14}}{3}\).

Vậy \({S_{\min }} = 3.\dfrac{{14}}{3} = 14\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com