Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho cấp số nhân \(\left( {{u_n}} \right)\)có \({u_1} = 2\)và \({u_4} = 54\). Tính tổng 2018 số hạng

Câu hỏi số 320411:
Vận dụng

Cho cấp số nhân \(\left( {{u_n}} \right)\)có \({u_1} = 2\)và \({u_4} = 54\). Tính tổng 2018 số hạng đầu tiên của cấp số nhân đó.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:320411
Phương pháp giải

Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số nhân: \({S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).

Giải chi tiết

Ta có: \({u_4} = {u_1}.{q^3} \Leftrightarrow 54 = 2.{q^3} \Leftrightarrow q = 3\).

Vậy tổng của 2018 số hạng đầu tiên của cấp số nhân đó là:

\({S_{2018}} = {{{u_1}\left( {1 - {q^{2018}}} \right)} \over {1 - 3}} = {{2\left( {1 - {3^{2018}}} \right)} \over { - 2}} = {3^{2018}} - 1\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com