Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(\left( P \right):\,\,2x + 3y + z - 11 = 0\), \(\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 8 =

Câu hỏi số 323597:
Vận dụng

Cho \(\left( P \right):\,\,2x + 3y + z - 11 = 0\), \(\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 8 = 0\). \(\left( P \right)\) tiếp xúc với \(\left( S \right)\) tại \(T\left( {a;b;c} \right)\). Tính \(a + b + c\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:323597
Giải chi tiết

* Ta có \(I\left( {1; - 2;1} \right)\).

* Lập phương trình \(\left( d \right)\) đi qua \(I\) và vuông góc với \(\left( P \right)\).

   +) \(\overrightarrow {{a_d}}  = \overrightarrow {{n_P}}  = \left( {2;3;1} \right)\).

   +) \(d\) qua \(I \Rightarrow d:\,\,\dfrac{{x - 1}}{2} = \dfrac{{y + 2}}{3} = \dfrac{{z - 1}}{1}\).

* Giải hệ \(\left\{ \begin{array}{l}d\\\left( P \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}3x - 2y - 7 = 0\\x - 2z + 1 = 0\\2x + 3y + z - 11 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 3\\y = 1\\z = 2\end{array} \right. \Rightarrow T\left( {3;1;2} \right)\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com