Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(\left( {{S_1}} \right):\,\,{x^2} + {y^2} + {z^2} = 9,\,\,{x^2} + {y^2} + {z^2} - 2x - 2y - 2z - 6 = 0\). Biết

Câu hỏi số 323600:
Vận dụng

Cho \(\left( {{S_1}} \right):\,\,{x^2} + {y^2} + {z^2} = 9,\,\,{x^2} + {y^2} + {z^2} - 2x - 2y - 2z - 6 = 0\). Biết \(\left( {{S_1}} \right)\) cắt \(\left( {{S_2}} \right)\) theo giao tuyến là \(\left( C \right)\). Tính \({R_C}\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:323600
Giải chi tiết

* Gọi \(\left( P \right)\) là mặt phẳng chứa \(\left( C \right)\). Phương trình \(\left( P \right):\,\left( {{S_1}} \right) - \left( {{S_2}} \right)\)

\( \Rightarrow 2x + 2y + 2z - 3 = 0\).

* \({I_1}\left( {0;0;0} \right),\,\,{I_1}H = d\left( {{I_1};\left( P \right)} \right)3 = \dfrac{{\left| 3 \right|}}{{\sqrt {4 + 4 + 4} }} = \dfrac{3}{{\sqrt {12} }}\).

* Xét tam giác vuông \({I_1}AH:\,\,\)

\(AH = {R_C} = \sqrt {{I_1}{A^2} - {I_1}{H^2}}  = \sqrt {9 - \dfrac{9}{{12}}}  = \sqrt {\dfrac{{99}}{{12}}} \).

Chọn A.   

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com