Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Khoảng cách từ điểm \(A\left( {0;4} \right)\) đến đường thẳng \(x.\sin \alpha  + y.\cos \alpha  +

Câu hỏi số 325312:
Vận dụng

Khoảng cách từ điểm \(A\left( {0;4} \right)\) đến đường thẳng \(x.\sin \alpha  + y.\cos \alpha  + 4\left( {1 - \cos \alpha } \right) = 0\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:325312
Phương pháp giải

Cho đường thẳng \(\Delta :ax + by + c = 0\) và điểm \({M_0}\left( {{x_0};{y_0}} \right) \Rightarrow d\left( {{M_0};\Delta } \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Giải chi tiết

Khoảng cách từ điểm \(A\left( {0;4} \right)\) đến đường thẳng \(x.\sin \alpha  + y.\cos \alpha  + 4\left( {1 - \cos \alpha } \right) = 0\) là:

\(\frac{{\left| {0.\sin \alpha  + 4.\cos \alpha  + 4\left( {1 - \cos \alpha } \right)} \right|}}{{\sqrt {{{\sin }^2}\alpha  + {{\cos }^2}\alpha } }} = \frac{{\left| {4\cos \alpha  + 4 - 4\cos \alpha } \right|}}{{\sqrt 1 }} = \frac{4}{1} = 4\)

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com