Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn \(\left( C \right):{x^2} + {y^2} - 8x + 6y + 21 = 0\) và đường thẳng \(d:x + y - 1 = 0\).

Câu hỏi số 325343:
Vận dụng cao

Cho đường tròn \(\left( C \right):{x^2} + {y^2} - 8x + 6y + 21 = 0\) và đường thẳng \(d:x + y - 1 = 0\). Xác định tọa độ các đỉnh A của hình vuông ABCD ngoại tiếp \(\left( C \right)\) biết \(A \in d\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:325343
Phương pháp giải

Xác định tâm I và bán kính của đường tròn \(\left( C \right)\), tính AI theo hình vẽ, gọi A theo 1 chữ tìm tọa độ của A

Giải chi tiết

Đường tròn \(\left( C \right)\) có tâm \(I\left( {4; - 3} \right)\) bán kính \(R = \sqrt {16 + 9 - 21}  = 2\)

\( \Rightarrow \left( C \right):\,\,\,{\left( {x - 4} \right)^2} + {\left( {y - 4} \right)^2} = 4.\)

Do hình vuông ABCD ngoại tiếp \(\left( C \right)\)

\(\begin{array}{l} \Rightarrow MN = 2R = 4 = AB = AD\\ \Rightarrow AM = \frac{1}{2}AD = 2\\ \Rightarrow A{I^2} = {2^2} + {2^2} = 8\end{array}\)

 Gọi \(A\left( {a;\,\,1 - a} \right) \in \left( d \right) \Rightarrow {\left( {4 - a} \right)^2} + {\left( {a - 4} \right)^2} = 8\)

\( \Leftrightarrow 2{\left( {a - 4} \right)^2} = 8 \Leftrightarrow \left[ \begin{array}{l}a - 4 = 2\\a - 4 =  - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = 6 \Rightarrow A\left( {6; - 5} \right)\\a = 2 \Rightarrow A\left( {2; - 1} \right)\end{array} \right.\) 

Chọn D.

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com