Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \dfrac{{ - {x^2} + 2x - 3}}{{x - 2}}\). Đạo hàm \(y'\) của hàm số là biểu thức nào

Câu hỏi số 332501:
Thông hiểu

Cho hàm số \(y = \dfrac{{ - {x^2} + 2x - 3}}{{x - 2}}\). Đạo hàm \(y'\) của hàm số là biểu thức nào sau đây?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:332501
Phương pháp giải

Sử dụng quy tắc \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - uv'}}{{{v^2}}}\).

Giải chi tiết

\(\begin{array}{l}y' = \dfrac{{\left( { - 2x + 2} \right)\left( {x - 2} \right) - \left( { - {x^2} + 2x - 3} \right)}}{{{{\left( {x - 2} \right)}^2}}}\\y' = \dfrac{{ - 2{x^2} + 4x + 2x - 4 + {x^2} - 2x + 3}}{{{{\left( {x - 2} \right)}^2}}}\\y' = \dfrac{{ - {x^2} + 4x - 1}}{{{{\left( {x - 2} \right)}^2}}} = \dfrac{{ - {x^2} + 4x - 4 + 3}}{{{{\left( {x - 2} \right)}^2}}} =  - 1 + \dfrac{3}{{{{\left( {x - 2} \right)}^2}}}\end{array}\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com