Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} + x} \right){\left( {x - 2}

Câu hỏi số 335801:
Thông hiểu

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} + x} \right){\left( {x - 2} \right)^2}\left( {{2^x} - 4} \right),\,\,\,\forall x \in \mathbb{R}.\)  Số điểm cực trị của \(f\left( x \right)\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:335801
Phương pháp giải

Số điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\)  là số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0.\)

Giải chi tiết

Ta có: \(f'\left( x \right) = 0\)

\(\begin{array}{l} \Leftrightarrow \left( {{x^2} + x} \right){\left( {x - 2} \right)^2}\left( {{2^x} - 4} \right) = 0\\ \Leftrightarrow x\left( {x + 1} \right){\left( {x - 2} \right)^2}\left( {{2^x} - {2^2}} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x + 1 = 0\\x - 2 = 0\\{2^x} - {2^2} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\\x = 2\\x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\,\left( {boi\,\,1} \right)\\x =  - 1\,\,\,\,\,\left( {boi\,\,1} \right)\\x = 2\,\,\,\,\,\left( {boi\,\,\,3} \right)\end{array} \right..\end{array}\)

Ta thầy phương trình \(f'\left( x \right) = 0\) có 3 nghiệm phân biệt và các nghiệm này đều là nghiệm bội lẻ nên hàm số \(y = f\left( x \right)\) có 3 điểm cực trị.

Chọn  C.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com