Xét phương trình bậc hai \(a{z^2} + bz + c = 0\) trên tập \(\mathbb{C}\,\,\left( {a \ne 0,\,\,a,b,c \in
Xét phương trình bậc hai \(a{z^2} + bz + c = 0\) trên tập \(\mathbb{C}\,\,\left( {a \ne 0,\,\,a,b,c \in \mathbb{R}} \right)\). Tìm điều kiện cần và đủ để phương trình có hai nghiệm \({z_1}\) và \({z_2}\) là hai số phức liên hợp với nhau.
Đáp án đúng là: D
Quảng cáo
Biện luận số nghiệm của phương trình bậc hai.
Khi Phương trình có nghiệm kép \({x_1} = {x_2}\). Rõ ràng 2 số thực bằng nhau là 2 số phức liên hợp vì \({x_1} = {x_1} + 0i,\,\,{x_2} = {x_1} = {x_1} - 0i\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












