Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính \(\sin \) của góc tạo bởi hai mặt kề nhau (tức là hai mặt có một cạnh chung) của một

Câu hỏi số 367027:
Vận dụng

Tính \(\sin \) của góc tạo bởi hai mặt kề nhau (tức là hai mặt có một cạnh chung) của một tứ diện đều.

Quảng cáo

Câu hỏi:367027
Phương pháp giải

Sử dụng lý thuyết:

Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng cùng vuông góc với giao tuyến.

Giải chi tiết

Xét tứ diện đều \(ABCD\) cạnh bằng \(a\). Gọi \(M\) và \(N\) theo thứ tự là trung điểm của \(AB\) và \(CD\).

Khi đó \(DM \bot AB,CM \bot AB\) \( \Rightarrow \) góc giữa hai mặt phẳng \(\left( {CAB} \right)\) và \(\left( {DAB} \right)\) bằng \(\widehat {CMD} = 2\widehat {CMN}\)

Ta có: \(CM = \dfrac{{a\sqrt 3 }}{2},CN = \dfrac{a}{2}\)

Do đó: \(\sin \widehat {CMN} = \dfrac{{\dfrac{a}{2}}}{{\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{1}{{\sqrt 3 }}\)\( \Rightarrow \cos \widehat {CMN} = \dfrac{{\sqrt 2 }}{{\sqrt 3 }}\)

Từ đó suy ra: \(\sin \widehat {CMD} = 2\sin \widehat {CMN}\cos \widehat {CMN}\)\( = 2.\dfrac{1}{{\sqrt 3 }}.\dfrac{{\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{2\sqrt 2 }}{3}\).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com