Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho ba đoạn thẳng bằng nhau, đôi một vuông góc với nhau và cắt nhau tại trung điểm của chúng.

Câu hỏi số 367028:
Vận dụng

Cho ba đoạn thẳng bằng nhau, đôi một vuông góc với nhau và cắt nhau tại trung điểm của chúng. Chứng minh rằng các đầu mút của ba đoạn thẳng ấy là các đỉnh của một hình bát diện đều.

Quảng cáo

Câu hỏi:367028
Phương pháp giải

Sử dụng lý thuyết về định nghĩa khối bát diện đều để chứng minh:

Khối bát diện đều là khối đa diện lồi có các mặt là các tam giác đều, mỗi đỉnh là đỉnh chung của \(4\) cạnh.

Giải chi tiết

Ta chứng minh tám mặt của khối bát diện trên là các tam giác đều.

Gọi ba đoạn thẳng \(AC,BD,EF\) có độ dài bằng \(a\) cắt nhau tại trung điểm \(O\) của mỗi đường.

Khi đó \(OA = OB = OC\) \( = OD = OE = OF = \dfrac{a}{2}\).

Tam giác \(EOC\) vuông cân tại \(O\) có \(OE = OC = \dfrac{a}{2}\) nên \(EC = \dfrac{{a\sqrt 2 }}{2}\).

Tương tự cũng tính được \(EA = EB = ED = FA\) \( = FB = FC = FD = \dfrac{{a\sqrt 2 }}{2}\).

Vậy \(ABCDEF\) là hình bát diện đều.

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com