Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{{\cos x - 2}}{{\cos x - m}}\)

Câu hỏi số 375133:
Vận dụng

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{{\cos x - 2}}{{\cos x - m}}\) nghịch biến trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right).\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:375133
Phương pháp giải

- Đặt ẩn phụ.

- Tính đạo hàm và tìm điều kiện để \(y' < 0\,\,\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\).

Giải chi tiết

Đặt \(t = \cos x\). Với \(x \in \left( {0;\dfrac{\pi }{2}} \right) \Rightarrow t \in \left( {0;1} \right)\).

Do  hàm số \(y = \cos x\) nghịch biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\) nên bài toán trở thành hàm số \(y = \dfrac{{t - 2}}{{t - m}}\) đồng biến trên \(\left( {0;1} \right)\)

Ta có \(y' = \dfrac{{ - m + 2}}{{{{\left( {t - m} \right)}^2}}} > 0.\)

Để hàm số đồng biến trên \(\left( {0;1} \right)\) thì \(\left\{ \begin{array}{l}y' > 0\\m \notin \left( {0;1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m + 2 > 0\\\left[ \begin{array}{l}m \le 0\\m \ge 1\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 2\\\left[ \begin{array}{l}m \le 0\\m \ge 1\end{array} \right.\end{array} \right.\)

Vậy \(\left[ \begin{array}{l}m \le 0\\1 \le m < 2\end{array} \right..\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com