Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho điểm \(A\) nằm ngoài mặt cầu \(S\left( {O;R} \right)\). Biết rằng qua \(A\) có vô số tiếp

Câu hỏi số 376393:
Vận dụng

Cho điểm \(A\) nằm ngoài mặt cầu \(S\left( {O;R} \right)\). Biết rằng qua \(A\) có vô số tiếp tuyến với mặt cầu. Tập hợp các tiếp điểm là một đường tròn nằm trên mặt cầu có bán kính bằng \(\dfrac{{\sqrt 2 }}{2}R\). Tính độ dài đoạn thẳng \(OA\) theo \(R.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:376393
Phương pháp giải

Vẽ hình và phân tích đề

Vận dụng các kiến thức về hình học để tính

Giải chi tiết

Giả sử có một tiếp tuyến đi qua \(A\) và cắt mặt cầu tại \(B\).

Qua \(B\) kẻ \(BI \bot OA\,\,\,\left( {I \in OA} \right)\) thì \(I\) là tâm đường tròn là tập hợp các tiếp điểm của tiếp tuyến kẻ từ \(A\).

Theo giả thiết ta có: \(IB = \dfrac{{\sqrt 2 R}}{2}\).

Tam giác \(OBA\) vuông tại \(B\), có chiều cao \(BI\) nên ta có:

\(\dfrac{1}{{I{B^2}}} = \dfrac{1}{{O{B^2}}} + \dfrac{1}{{B{A^2}}}\) (hệ thức lượng trong tam giác vuông).

\(\begin{array}{l} \Leftrightarrow \dfrac{1}{{{{\left( {\dfrac{{\sqrt 2 R}}{2}} \right)}^2}}} = \dfrac{1}{{{R^2}}} + \dfrac{1}{{B{A^2}}} \Rightarrow BA = R\\ \Rightarrow OA = \sqrt {O{B^2} + B{A^2}}  = \sqrt 2 R\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com